

A Two-Phase Flying Capacitor Buck Converter with Enhanced Current Balancing Using Adaptive Dead-Time Control

HyeSeon Kim and SoYoung Kim

College of Information and Communication Engineering, Sungkyunkwan University Email: 0629hs@skku.edu / ksyoung@skku.edu

ICDS lab.

Introduction

- **(b) (a) Buck converter** 0.4 **Passive components**
- Why fully integrated buck converter?
- > Fast transient response for DVFS.
- Key Features of Multi-Phase Technology in FIVRs

Efficient current distribution: Each phase operates in parallel phases to handle high currents.

Controlling the dead-time of each phase corrects the timing mismatch between the inductor current peak and valley, effectively reducing current imbalance.

Operating Principles

▲ Block diagram of (a) two-phase flying capacitor buck converter, (b) Adaptive dead-time controller.

- Sample & Hold

- ▲ (a) Circuit layout, (b) Current ripple: conventional vs. proposed (post-layout), (c) Two-phase inductor currents, (d) Efficiency: simulation vs. measurement.
- Performance

➢Phase current ripple: 90 mA (Post-layout), 200mA (PCB).

>L1 and L2 operate with a 180° phase shift, achieving uniform current sharing.

Dead-time controller	Fixed	Adaptive
I _{OUT,MAX} (mA)	620	450
I _{OUT,MIN} (mA)	440	360
l _{out,avg} (mA)	530	400
ΔI _{OUT}	180	90 (-50%)

Parameter	Post	PCB
	layout	
V _{IN} (V)	5	5.5
V _{OUT} (V)	0.95	0.95
f _{sw} (MHz)	25	25
L(nH)	35	35
C _{FLY} (nF)	5	5
C (nE)	2	2

